Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Sci Rep ; 13(1): 9121, 2023 06 05.
Article in English | MEDLINE | ID: covidwho-20234900

ABSTRACT

During the COVID-19 pandemic in Senegal, contact tracing was done to identify transmission clusters, their analysis allowed to understand their dynamics and evolution. In this study, we used information from the surveillance data and phone interviews to construct, represent and analyze COVID-19 transmission clusters from March 2, 2020, to May 31, 2021. In total, 114,040 samples were tested and 2153 transmission clusters identified. A maximum of 7 generations of secondary infections were noted. Clusters had an average of 29.58 members and 7.63 infected among them; their average duration was 27.95 days. Most of the clusters (77.3%) are concentrated in Dakar, capital city of Senegal. The 29 cases identified as super-spreaders, i.e., the indexes that had the most positive contacts, showed few symptoms or were asymptomatic. Deepest transmission clusters are those with the highest percentage of asymptomatic members. The correlation between proportion of asymptomatic and degree of transmission clusters showed that asymptomatic strongly contributed to the continuity of transmission within clusters. During this pandemic, all the efforts towards epidemiological investigations, active case-contact detection, allowed to identify in a short delay growing clusters and help response teams to mitigate the spread of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Contact Tracing , Pandemics , Senegal/epidemiology
2.
Vaccine ; 41(27): 4050-4056, 2023 Jun 19.
Article in English | MEDLINE | ID: covidwho-2318746

ABSTRACT

Africa is set to experience a three-fold increase in vaccine demand by 2040, yet the continent possesses few domestic capabilities for vaccine production. This lack of production capacity, heavy reliance on foreign aid, disruptions of hard-won immunization progress due to the effects of the COVID-19 pandemic, and fluctuating vaccine market dynamics threaten to hinder ongoing efforts to increase vaccination rates on the continent. In order meet the vaccine demands of a rapidly growing population, and to be able to provide novel vaccines to its population in the future, the African continent must develop a sustainable vaccine manufacturing infrastructure. The African Union, in partnership with the Africa Centres for Disease Control and Prevention, recently set forth its Program for African Vaccine Manufacturing Framework for Action, which sets the goal of Africa producing 60 % of its vaccine needs by 2040. To meet these goals, African governments and their multinational, philanthropic, and private sector partners must work to secure low-cost financing and provide a favourable regulatory environment for nascent African vaccine manufacturers. Doing so will save lives, safeguard the health of the continent's current and future citizens, and contribute to economic growth through the development of local bioeconomies.


Subject(s)
COVID-19 , Vaccines , Humans , Pandemics , COVID-19/prevention & control , Vaccination , Africa
3.
Lancet Infect Dis ; 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2309136

ABSTRACT

BACKGROUND: Current supply shortages constrain yellow fever vaccination activities, particularly outbreak response. Although fractional doses of all WHO-prequalified yellow fever vaccines have been shown to be safe and immunogenic in a randomised controlled trial in adults, they have not been evaluated in a randomised controlled trial in young children (9-59 months old). We aimed to assess the immunogenicity and safety of fractional doses compared with standard doses of the WHO-prequalified 17D-213 vaccine in young children. METHODS: This substudy of the YEFE phase 4 study was conducted at the Epicentre Mbarara Research Centre (Mbarara, Uganda). Eligible children were aged 9-59 months without contraindications for vaccination, without history of previous yellow fever vaccination or infection and not requiring yellow fever vaccination for travelling. Participants were randomly assigned, using block randomisation, 1:1 to standard or fractional (one-fifth) dose of yellow fever vaccine. Investigators, participants, and laboratory personnel were blinded to group allocation. Participants were followed for immunogenicity and safety at 10 days, 28 days, and 1 year after vaccination. The primary outcome was non-inferiority in seroconversion (-10 percentage point margin) 28 days after vaccination measured by 50% plaque reduction neutralisation test (PRNT50) in the per-protocol population. Safety and seroconversion at 10 days and 12-16 months after vaccination (given COVID-19 resctrictions) were secondary outcomes. This study is registered with ClinicalTrials.gov, NCT02991495. FINDINGS: Between Feb 20, 2019, and Sept 9, 2019, 433 children were assessed, and 420 were randomly assigned to fractional dose (n=210) and to standard dose (n=210) 17D-213 vaccination. 28 days after vaccination, 202 (97%, 95% CI 95-99) of 207 participants in the fractional dose group and 191 (100%, 98-100) of 191 in the standard dose group seroconverted. The absolute difference in seroconversion between the study groups in the per-protocol population was -2 percentage points (95% CI -5 to 1). 154 (73%) of 210 participants in the fractional dose group and 168 (80%) of 210 in the standard dose group reported at least one adverse event 28 days after vaccination. At 10 days follow-up, seroconversion was lower in the fractional dose group than in the standard dose group. The most common adverse events were upper respiratory tract infections (n=221 [53%]), diarrhoea (n=68 [16%]), rhinorrhoea (n=49 [12%]), and conjunctivitis (n=28 [7%]). No difference was observed in incidence of adverse events and serious adverse events between study groups. CONCLUSIONS: Fractional doses of the 17D-213 vaccine were non-inferior to standard doses in inducing seroconversion 28 days after vaccination in children aged 9-59 months when assessed with PRNT50, but we found fewer children seroconverted at 10 days. The results support consideration of the use of fractional dose of yellow fever vaccines in WHO recommendations for outbreak response in the event of a yellow fever vaccine shortage to include children. FUNDING: Médecins Sans Frontières Foundation.

4.
Diagn Microbiol Infect Dis ; 105(4): 115903, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2292134

ABSTRACT

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics , Enzyme-Linked Immunosorbent Assay , Tunisia/epidemiology , Antibodies, Viral
5.
Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology ; 2023.
Article in English | EuropePMC | ID: covidwho-2254122

ABSTRACT

Background : The COVID-19 pandemic led to severe health systems collapse, as well as logistics and supply delivery shortages across sectors. Delivery of PCR related healthcare supplies continue to be hindered. There is the need for a rapid and accessible SARS-CoV-2 molecular detection method in low resource settings. Objectives : To validate a novel isothermal amplification method for rapid detection of SARS-CoV-2 across seven sub-Sharan African countries. Study design : In this multi-country phase 2 diagnostic study, 3,231 clinical samples in seven African sites were tested with two reverse transcription Recombinase-Aided Amplification (RT-RAA) assays (based on SARS-CoV-2 Nucleocapsid (N) gene and RNA-dependent RNA polymerase (RdRP) gene). The test was performed in a mobile suitcase laboratory within 15 minutes. All results were compared to a real-time RT-PCR assay. Extraction kits based on silica gel or magnetic beads were applied. Results : Four sites demonstrated good to excellent agreement, while three sites showed fair to moderate results. The RdRP gene assay exhibited an overall PPV of 0.92 and a NPV of 0.88. The N gene assay exhibited an overall PPV of 0.93 and a NPV 0.88. The sensitivity of both RT-RAA assays varied depending on the sample Ct values. When comparing sensitivity between sites, values differed considerably. For high viral load samples, the RT-RAA assay sensitivity ranges were between 60.5 and 100% (RdRP assay) and 25 and 98.6 (N assay). Conclusion : Overall, the RdRP based RT-RAA test showed the best assay accuracy. This study highlights the challenges of implementing rapid molecular assays in field conditions. Factors that are important for successful deployment across countries include the implementation of standardized operation procedures, in-person continuous training for staff, and enhanced quality control measures.

7.
Vaccines (Basel) ; 11(3)2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2258772

ABSTRACT

This Review initiates a wide-ranging discussion over 2023 by selecting and exploring core themes to be investigated more deeply in papers submitted to the Vaccines Special Issue on the "Future of Epidemic and Pandemic Vaccines to Serve Global Public Health Needs". To tackle the SARS-CoV-2 pandemic, an acceleration of vaccine development across different technology platforms resulted in the emergency use authorization of multiple vaccines in less than a year. Despite this record speed, many limitations surfaced including unequal access to products and technologies, regulatory hurdles, restrictions on the flow of intellectual property needed to develop and manufacture vaccines, clinical trials challenges, development of vaccines that did not curtail or prevent transmission, unsustainable strategies for dealing with variants, and the distorted allocation of funding to favour dominant companies in affluent countries. Key to future epidemic and pandemic responses will be sustainable, global-public-health-driven vaccine development and manufacturing based on equitable access to platform technologies, decentralised and localised innovation, and multiple developers and manufacturers, especially in low- and middle-income countries (LMICs). There is talk of flexible, modular pandemic preparedness, of technology access pools based on non-exclusive global licensing agreements in exchange for fair compensation, of WHO-supported vaccine technology transfer hubs and spokes, and of the creation of vaccine prototypes ready for phase I/II trials, etc. However, all these concepts face extraordinary challenges shaped by current commercial incentives, the unwillingness of pharmaceutical companies and governments to share intellectual property and know-how, the precariousness of building capacity based solely on COVID-19 vaccines, the focus on large-scale manufacturing capacity rather than small-scale rapid-response innovation to stop outbreaks when and where they occur, and the inability of many resource-limited countries to afford next-generation vaccines for their national vaccine programmes. Once the current high subsidies are gone and interest has waned, sustaining vaccine innovation and manufacturing capability in interpandemic periods will require equitable access to vaccine innovation and manufacturing capabilities in all regions of the world based on many vaccines, not just "pandemic vaccines". Public and philanthropic investments will need to leverage enforceable commitments to share vaccines and critical technology so that countries everywhere can establish and scale up vaccine development and manufacturing capability. This will only happen if we question all prior assumptions and learn the lessons offered by the current pandemic. We invite submissions to the special issue, which we hope will help guide the world towards a global vaccine research, development, and manufacturing ecosystem that better balances and integrates scientific, clinical trial, regulatory, and commercial interests and puts global public health needs first.

9.
Sci Rep ; 13(1): 782, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2186086

ABSTRACT

Profiling of the antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proteins in African populations is scarce. Here, we performed a detailed IgM and IgG epitope mapping study against 487 peptides covering SARS-CoV-2 wild-type structural proteins. A panel of 41 pre-pandemic and 82 COVID-19 RT-PCR confirmed sera from Madagascar and Senegal were used. We found that the main 36 immunodominant linear epitopes identified were (i) similar in both countries, (ii) distributed mainly in the Spike and the Nucleocapsid proteins, (iii) located outside the RBD and NTD regions where most of the reported SARS-CoV-2 variant mutations occur, and (iv) identical to those reported in European, North American, and Asian studies. Within the severe group, antibody levels were inversely correlated with the viral load. This first antibody epitope mapping study performed in patients from two African countries may be helpful to guide rational peptide-based diagnostic assays or vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Epitope Mapping , Antibodies, Viral , Immunodominant Epitopes , Senegal
10.
Sci Rep ; 12(1): 22175, 2022 12 22.
Article in English | MEDLINE | ID: covidwho-2186046

ABSTRACT

Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.


Subject(s)
COVID-19 , Malaria , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies, Viral , Cross Reactions , N-Acetylneuraminic Acid , Epitopes
11.
Lancet ; 400(10369): 2163-2164, 2022 12 17.
Article in English | MEDLINE | ID: covidwho-2184606
12.
COVID ; 2(10):1509-1517, 2022.
Article in English | MDPI | ID: covidwho-2081947

ABSTRACT

The COVID-19 pandemic required massive testing of potential patients in resource-constrained areas in Senegal. The first case of COVID-19 was reported on 2 March 2020 in Dakar city and on 10 March, the first cases were reported in Touba city, the second most populous city in Senegal. Following the scale of confirmed COVID-19 cases in Touba city, the Institut Pasteur de Dakar mobile laboratory truck (MLT) was deployed on March 13 to bring diagnostics to the point of need for better management of patient and outbreak control. The MLT deployed is a 6 ×6 truck equipped with an isolator for sample inactivation, a generator and batteries to ensure energy autonomy, and a molecular platform for pathogens detection. Nasal and oropharyngeal swabs were collected from suspected COVID-19 cases and sent to the MLT located at the Touba primary healthcare center. Samples were extracted and RNA amplified by real time qRT-PCR. A total of 11,693 samples were collected from 14 regions of Senegal and tested between March to August 2021. Within the samples tested, 10.6% (1240/1693) were positive for SARS-CoV-2. Furthermore, the MLT allowed the confirmation of the first cases of COVID-19 in 25 out of 79 health districts of Senegal. Thereby, the MLT deployment during the first 6 months of COVID-19 in Senegal allowed rapid processing of suspected case samples collected in Touba and other surrounding areas and, thus, significantly contributed to the outbreak response and early case management in Senegal.

13.
PLoS One ; 17(9): e0274783, 2022.
Article in English | MEDLINE | ID: covidwho-2039428

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic has spread from China to the rest of the world. Africa seems less impacted with lower number of cases and deaths than other continents. Senegal recorded its first case on March 2, 2020. We present here data collected from March 2 to October 31, 2020 in Senegal. METHODS: Socio-demographic, epidemiological, clinical and virological information were collected on suspected cases. To determine factors associated with diagnosed infection, symptomatic disease and death, multivariable binary logistic regression and log binomial models were used. Epidemiological parameters such as the reproduction number and growth rate were estimated. RESULTS: 67,608 suspected cases were tested by the IPD laboratories (13,031 positive and 54,577 negative). All age categories were associated with SARS-CoV-2 infection, but also patients having diabetes or hypertension or other cardiovascular diseases. With diagnosed infection, patients over 65 years and those with hypertension and cardiovascular disease and diabetes were highly associated with death. Patients with co-morbidities were associated with symptomatic disease, but only the under 15 years were not associated with. Among infected, 27.67% were asymptomatic (40.9% when contacts were systematically tested; 12.11% when only symptomatic or high-risk contacts were tested). Less than 15 years-old were mostly asymptomatic (63.2%). Dakar accounted for 81.4% of confirmed cases. The estimated mean serial interval was 5.57 (± 5.14) days. The average reproduction number was estimated at 1.161 (95%CI: 1.159-1.162), the growth rate was 0.031 (95%CI: 0.028-0.034) per day. CONCLUSIONS: Our findings indicated that factors associated with symptomatic COVID-19 and death are advanced age (over 65 years-old) and comorbidities such as diabetes and hypertension and cardiovascular disease.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus , Hypertension , Adolescent , Aged , COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Humans , Hypertension/epidemiology , Pandemics , SARS-CoV-2 , Senegal/epidemiology
14.
Sci Rep ; 12(1): 12962, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960509

ABSTRACT

Early predictions forecasted large numbers of severe acute respiratory syndrome coronavirus (SARS-CoV-2) cases and associated deaths in Africa. To date, Africa has been relatively spared. Various hypotheses were postulated to explain the lower than anticipated impact on public health in Africa. However, the contribution of pre-existing immunity is yet to be investigated. In this study, the presence of antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in pre-pandemic samples from Africa, Europe, South and North America was examined by ELISA. The protective efficacy of N specific antibodies isolated from Central African donors was tested by in vitro neutralization and in a mouse model of SARS-CoV-2 infection. Antibodies against SARS-CoV-2 S and N proteins were rare in all populations except in Gabon and Senegal where N specific antibodies were prevalent. However, these antibodies failed to neutralize the virus either in vitro or in vivo. Overall, this study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. However, this pre-existing humoral immunity does not impact viral fitness in rodents suggesting that other human immune defense mechanisms could be involved. In Africa, seroprevalence studies using the N protein are over-estimating SARS-CoV-2 circulation.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , Humans , Mice , Pandemics , SARS-CoV-2 , Senegal , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
15.
Viruses ; 14(5)2022 04 22.
Article in English | MEDLINE | ID: covidwho-1810320

ABSTRACT

The burden of encephalitis and its associated viral etiology is poorly described in Africa. Moreover, neurological manifestations of COVID-19 are increasingly reported in many countries, but less so in Africa. Our prospective study aimed to characterize the main viral etiologies of patients hospitalized for encephalitis in two hospitals in Dakar. From January to December 2021, all adult patients that met the inclusion criteria for clinical infectious encephalitis were enrolled. Cerebrospinal fluids, blood, and nasopharyngeal swabs were taken and tested for 27 viruses. During the study period, 122 patients were enrolled. Viral etiology was confirmed or probable in 27 patients (22.1%), with SARS-CoV-2 (n = 8), HSV-1 (n = 7), HHV-7 (n = 5), and EBV (n = 4) being the most detected viruses. Age groups 40-49 was more likely to be positive for at least one virus with an odds ratio of 7.7. The mortality was high among infected patients, with 11 (41%) deaths notified during hospitalization. Interestingly, SARS-CoV-2 was the most prevalent virus in hospitalized patients presenting with encephalitis. Our results reveal the crucial need to establish a country-wide surveillance of encephalitis in Senegal to estimate the burden of this disease in our population and implement strategies to improve care and reduce mortality.


Subject(s)
COVID-19 , Encephalitis, Viral , Encephalitis , Viruses , Adult , COVID-19/epidemiology , Encephalitis/epidemiology , Encephalitis, Viral/epidemiology , Humans , Prospective Studies , SARS-CoV-2 , Senegal/epidemiology
16.
IJID Reg ; 3: 117-125, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1720093

ABSTRACT

Objectives: A nationwide cross-sectional epidemiological survey was conducted to capture the true extent of coronavirus disease 2019 (COVID-19) exposure in Senegal. Methods: Multi-stage random cluster sampling of households was performed between October and November 2020, at the end of the first wave of COVID-19 transmission. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were screened using three distinct ELISA assays. Adjusted prevalence rates for the survey design were calculated for each test separately, and thereafter combined. Crude and adjusted prevalence rates based on test performance were estimated to assess the seroprevalence. As some samples were collected in high malaria endemic areas, the relationship between SARS-CoV-2 seroreactivity and antimalarial humoral immunity was also investigated. Results: Of the 1463 participants included in this study, 58.8% were female and 41.2% were male; their mean age was 29.2 years (range 0.20-84.8.0 years). The national seroprevalence was estimated at 28.4% (95% confidence interval 26.1-30.8%). There was substantial regional variability. All age groups were impacted, and the prevalence of SARS-CoV-2 was comparable in the symptomatic and asymptomatic groups. An estimated 4 744 392 (95% confidence interval 4 360 164-5 145 327) were potentially infected with SARS-CoV-2 in Senegal, while 16 089 COVID-19 RT-PCR laboratory-confirmed cases were reported by the national surveillance. No correlation was found between SARS-CoV-2 and Plasmodium seroreactivity. Conclusions: These results provide a better estimate of SARS-CoV-2 dissemination in the Senegalese population. Preventive and control measures need to be reinforced in the country and especially in the south border regions.

19.
J Clin Med ; 10(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288937

ABSTRACT

As of today, little data is available on COVID-19 in African countries, where the case management relied mainly on a treatment by association between hydroxychloroquine (HCQ) and azithromycin (AZM). This study aimed to understand the main clinical outcomes of COVID-19 hospitalized patients in Senegal from March to October 20202. We described the clinical characteristics of patients and analysed clinical status (alive and discharged versus hospitalized or died) at 15 days after Isolation and Treatment Centres (ITC) admission among adult patients who received HCQ plus AZM and those who did not receive this combination. A total of 926 patients were included in this analysis. Six hundred seventy-four (674) (72.8%) patients received a combination of HCQ and AZM. Results showed that the proportion of patient discharge at D15 was significantly higher for patients receiving HCQ plus AZM (OR: 1.63, IC 95% (1.09-2.43)). Factors associated with a lower proportion of patients discharged alive were: age ≥ 60 years (OR: 0.55, IC 95% (0.36-0.83)), having of at least one pre-existing disorder (OR: 0.61, IC 95% (0.42-0.90)), and a high clinical risk at admission following NEWS score (OR: 0.49, IC 95% (0.28-0.83)). Few side effects were reported including 2 cases of cardiac rhythmic disorders in the HCQ and AZM group versus 13 in without HCQ + AZM. An improvement of clinical status at 15 days was found for patients exposed to HCQ plus AZM combination.

SELECTION OF CITATIONS
SEARCH DETAIL